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Abstract

Ancient human remains of paleopathological interest typically contain highly degraded DNA in
which pathogenic taxa are often minority components, making sequence-based metagenomic
characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid,
affordable, and highly informative snapshot of microbial diversity in complex samples without the
lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well
established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we
report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore
Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial
human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and
Yersinia pestis (“Black Death”) in a medieval tooth, which represented only minute fractions (0.03%
and 0.08% alignable sequence reads) of their respective DNA content. This demonstrates that the
LLMDA can identify primary and or co-infecting bacterial pathogens obtained with high-throughput
shotgun sequences, thereby serving as a rapid and inexpensive paleopathological screening tool to
study health across both space and time.



Introduction

Research into the origins of infectious diseases and population health through time faces many
challenges, such as biased archival records and ambiguous paleopathological skeletal indicators of
actual pathogen infection levels.! Despite its inherent fragility, ancient DNA (aDNA) remains a highly
informative paleopathological study target, having been recovered and characterized from a variety of
contexts, age depths and specimen types.? Recently, high-throughput sequencing (HTS), often coupled
with targeted enrichment (TE), has allowed for the recovery of large genomic targets from
archaeological specimens, including full pathogen genomes.>® However, TE-HTS is only useful when
the primary pathogen(s) are known or suspected to be present, and necessarily ignores non-targeted
taxa and genomic loci. This is problematic because the primary pathogenic agent in an ancient
paleopathological specimen can be elusive, and furthermore the entire microbiome likely played a
significant role in past human health, as it does today.’” Therefore establishing detailed levels of
commensal and co-infecting pathogens is essential for accurately reconstructing past epidemics,
population health, and disease susceptibility. As such, for paleopathologists wishing to examine
changes in microbial co-infection levels across space and time, more comprehensive metagenomic
characterization is necessary. One way to achieve this is by sequencing amplicons of conserved loci
(such as 16S rRNA) that can to a degree measure the metagenomic content of a sample. However, by
design, amplicon datasets ignore potential taxonomically-informative diversity in more variable
genomic regions, and for that matter can be biased by polymerase or disparate target abundances.®’
Metagenomic “shotgun” HTS on the other hand is arguably the most comprehensive and least biased
method currently available for total microbial characterization for modern and aDNA specimens'®*,
but very deep sequencing is often required to identify pathogens confidently. While certainly powerful,
both of these metagenomic approaches can be labor- and time-intensive, thereby representing
significant barriers for groups that would like to thoroughly profile or screen the microbial content of
large or difficult paleopathological sample sets.

One potential technological solution to this issue is the microarray, which over the past two
decades has been used for the large-scale study of gene expression and genic content of simple and
complex samples'?. Microarrays are glass slides densely spotted with clusters of single-stranded
synthetic oligonucleotides that are allowed to hybridize with fluorophore-labeled DNA from a sample,
and the resulting fluorescence signals are interpreted to determine sequence composition and/or
taxonomic content. Recently, microarrays designed specifically for characterizing the microbial content

of complex samples have been successfully used (e.g. =2

~ENREF 13), particularly in cases where
traditional clinical methods are inconclusive, time-consuming, and/or expensive.'® Microarrays can
contain up to millions of unique oligonucleotides and their use and analysis involve low processing
time and cost.”® Therefore, they potentially provide a more practical alternative to metagenomic HTS

for characterizing the microbial content of paleopathological specimens. However, microarray



detection techniques have not yet been applied to aDNA extracts, which due to short fragment length
and base damage may present challenges to microarray analysis.

To assess the potential value of microarrays for pathogen aDNA analysis, here we compare
microbial profiles of two archaeological human specimens generated with a recently-developed
pathogen detection microarray to profiles generated with standard metagenomic HTS analysis. For
microarray analysis, we used the Lawrence Livermore Microbial Detection Array (LLMDA) designed by
the Lawrence Livermore National Laboratory,™ one of several array platforms developed in the last
decade to identify pathogens in experimental mixtures and clinical samples.'” The LLMDA v5 12x135K
array contains probes designed from all published vertebrate-infecting pathogen genomes that target
regions unique to at least the family taxonomic level. Florescence data is analyzed using a likelihood
maximization algorithm to identify the combination of microbial genomes that best explains the
observed signals (see Supplementary Materials for full description). The specimens we analyze here are
a preserved intestinal medical sample from an 1849AD cholera victim (specimen 3090.13)® and a tooth
from a 1348AD Black Death plague victim (specimen 8291).> Both specimens were previously
confirmed with TE-HTS to contain their relevant pathogens, though they constitute very low levels in
shotgun HTS datasets (3090.13: 0.03% alignable with bowtie to Vibrio cholerae, the etiological agent of
cholera; 8291: 0.08% alignable to Yersinia pestis, the etiological agent of the Black Death, *°). Both of
these pathogens’ families (Vibrionaceae and Enterobacteraceae) have probes on the LLMDA and, if
within the sensitivity threshold of the LLMDA, should therefore be detectable. We specifically assess
(1) whether LLMDA would detect these previously determined pathogens, (2) which additional bacteria
were detectable by both LLMDA and HTS, and (3) which bacteria were detected by either LLMDA or
HTS alone.

Results

Here we restrict our taxonomic profile comparisons to bacterial families since the sequencing
libraries were built from DNA only and thus not appropriate for a complete viral survey. Note that the
v5 12x135K LLMDA probes were derived from all complete genomic sequences from vertebrate-
infecting pathogens available at the time of design (December 2011). However, as the hybridization
patterns were interpreted using an updated genome database (created in April 2012), probes originally
designed for one family may match newly sequenced genomes from other taxa as well. In addition,
probes with weak similarity to bacterial genomes from non-vertebrate infecting families may hybridize
to these genomes, so that the potential taxonomic calls are not limited to those used specifically for
probe design. For the metagenomic HTS data, taxonomic assignments were identified by BLAST
(blastn-megablast)*® and MEGAN4?! analysis against the National Center for Biotechnology Information
(NCBI) RefSeq genome database®” (October 2012). Results for both methods are given in Table 1 and
Table S1 and a schematic comparison is provided in Figure 1.



Taxa detected by both LLMDA & HTS

For cholera victim 3090.13, twenty-one families were detected by both LLMDA and the 118
million BLASTed HTS reads from the sample (Figure 1), representing 36.8% and 40.4% of the families
called by each respective method. For plague victim 8291, fifty-three families were detected by both
approaches, representing 89.8% and 27.9% of the families called by LLMDA and 83 million HTS reads,
respectively. These overlaps included many groups with relatively high read counts in the HTS data
(e.g. Aeromonadaceae and Enterobacteriaceae for 3090.13; Burkholderiaceae, Comamonadaceae, and
Pseudomonadaceae for 8291). In addition, both methods detected the previously confirmed significant
pathogens to the species level. For 3090.13, 10,379 (0.009% of BLAST reads) were V. cholerae, and
LLMDA called the family Vibrionaceae with V. cholerae chromosomal sequences at a high log odds
value (4,470.7). For 8291, 1,272 (0.001% of BLAST reads) were Y. pestis, and LLMDA called the family
Enterobacteriaceae including Y. pestis plasmid sequences (among other species) at a high odds value
(1,640.8).

The LLMDA used here only targets groups with at least one vertebrate-infecting pathogen
species; however it is able to detect families not represented by distinct probes on the array. When we
considered only the families on the array for with specific probes had been designed for them, we
detected 19 families in the cholera victim 3090.13 by both LLMDA and HTS, representing 41.3% and
79.2% of the families called by each respective method and 46 families for the plague victim 8291,
representing 92.0% and 56.8% of the families with probes on the array (LLMDA and HTS).

Taxa detected by only one method

BLAST analyses of HTS reads identified many families that were not detected by LLMDA
analyses (for cholera victim 3090.13, n = 10, 32.3% of all HTS; for plague victim 8291, n = 137, 72.1% of
all HTS), such as Neisseriaceae and Shewanellaceae in sample 3090.13, Cellulomonadaceae and
Rhizobiaceae in sample 8291, and Fusobacteriaceae and Peptostreptococcaceae in both samples.
Likewise, LLMDA analysis identified many families that HTS-MEGAN4 did not (for 3090.13, n = 36,
63.1% of all LLMDA; for 8291, n =6, 10.2% of all LLMDA). When excluding taxonomic groups without
probes designed for them on the array, that left only 5 families detected by HTS (20.8%) for sample
3090.13 and 35 (43.2%) for 8291 and 27 families for 3090.13 (58.7% of all LLMDA) and 4 for 8291
(8.0%) only detected via LLMDA.

Discussion
Figure 2 displays the MEGAN4 output of the NCBI taxonomy for all taxa identified with BLAST

analysis of the HTS data and whether they were also detected with LLMDA. Overall, the LLMDA profiles
reflect the major HTS-identified components well. Not only were the previously-identified pathogen



families detected via both methods, but a number of major environmental, microbiomic and
pathogenic taxa were identified to at least the order level (e.g., Actinomycetales, Bacilliales,
Clostridiales, or Rhizobiales). While promising, a number of disparities between the profiles generated
by each method encourage further investigation into their origin (discussed below).

When comparing metagenomic profiles generated by each method, it is important to be aware
of the fundamental differences in their taxonomic identification strategies. For the analysis of BLAST
output from HTS data, default parameters in MEGAN4 require five sequence reads to assign a taxon as
being present; furthermore, the reads do not have to be assigned to the same species for family-level
calls.”! MEGANA4 also gives equal weight to read mappings that are concentrated in narrow regions of a
target genome, which are inherently less specific as indicators of the target’s presence. A common
possible scenario leading to false positive taxon assignments could occur in both HTS and microarray
analysis, when reads or probes map to ribosomal RNA or housekeeping genes that are relatively
conserved between related taxa. Microarray probes can be designed to avoid these conserved regions,
but in general sequence reads mapping to such regions are not filtered out in metagenomic analysis.
Therefore, BLAST/MEGAN4 analysis of HTS data emphasizes sensitivity at the expense of specificity.

The CLiMax algorithm used for LLMDA analysis requires that a family satisfy more stringent
criteria to be considered present. The initial CLiMax analysis is performed at the target genome level
rather than the family level; for a target to be called present, a minimum of 4 probes or 20% of the
probes designed against the target (whichever is larger) must have intensities above an array-specific
significance threshold. In addition, targets for which the high intensity probes are concentrated in
narrow genomic regions are filtered out as potential false positives (see Supplementary Appendix for
description of methods). When this filtering is removed, or if the minimum probe criteria are relaxed,
CLiMax predicts the presence of several previously undetected families (data not shown). However,
our previous experiments in which the LLMDA was hybridized to samples of known microbial content
indicate that stringent filtering is necessary to avoid false positives.™ Therefore, the CLiMax analysis is
much more conservative in its predictions than BLAST/MEGAN4 analysis, emphasizing specificity over
sensitivity.

Several taxa detected with HTS were not detected with LLMDA. Many of these are unsurprising,
as no probes designed from their genomes were on the array. However for those taxa that were used
for array probe design, one possibility is that the LLMDA is not as sensitive as HTS at these sequencing
depths: in plague victim 8291, taxa not detected with LLMDA had significantly fewer HTS reads than
those that were (two-tailed, unequal variance Student’s t-test, p = 0.004; Figure 3a), though this
relationship is much weaker for cholera victim 3090.13 (p = 0.152). Furthermore, several taxa with
relatively high read counts and with probes designed on the array were surprisingly not called (e.g.,
Sphingomonadaceae in sample 8291; Peptostreptococcaceae in both samples). That said, in the



majority of cases where a family with probes designed on the array was declared present by
BLAST/MEGAN4 analysis but not called with LLMDA, a closely-related taxon was called (e.g., in both
samples, Clostridiaceae was called though its close relative Peptostreptococcaceae was not).

To better understand the data used by MEGANA4 to call family Peptostreptococcaceae as
present, we examined the gene, rRNA, and other feature annotations for the mapped read positions in
Clostridium difficile strain 630 (RefSeq accession NC_009089.1), one of the fully sequenced genomes in
this family. Notably, 915 of 1328 (69%) reads mapped to this genome from cholera victim 3090.13 and
146 of 319 (46%) from plague victim 8291 were within rRNA genes. Since rRNA genes only cover 1.1%
of the C. difficile 630 genome, these read counts are far larger than would be expected by chance
alone. Consequently, we suspect that a large part of the data used by MEGANA4 to call this family as
present is based on reads that map to highly conserved genes, and could also support the presence of
a related taxon. Although a detailed analysis of MEGAN4 performance is beyond the scope of this
study, our preliminary results suggest that its relative nonspecificity could underlie some of the
discrepancies between HTS and microarray predictions.

We also considered the possibility that relatively low GC content of the targets could
compromise hybridization-based LLMDA detection. Average log (fluorescence) intensity of probes for a
given taxon strongly correlates with the average GC% of that probe set (r=0.56, p = 0.0028, R> = 0.368
for cholera victim 3090.13; r=0.65, p = 2.5 x 10 R?=0.653 for plague victim 8291; Figure 4), but
LLMDA detected taxa across the range of average log intensities. Furthermore, for taxa used for probe
design, there is no significant difference in GC content between LLMDA-positive and LLMDA-negative
HTS reads (two-tailed, unequal variance Student’s t-test, p = 0.252 for 3090.13, p = 0.779 for 8291,
Figure 3b). This indicates that GC content alone cannot explain a taxon’s presence or absence from the
LLMDA calls. Confident LLMDA log odds-based identification may also be compromised when regional
preservation or amplification biases have reduced the evenness of genomic representation by the
individual reads. However, for taxa with probes on the array, there is no significant difference between
the proportions of unique genomic bases covered by HTS reads for LLMDA-positive and LLMDA-
negative taxa (two-tailed, unequal variance Student’s t-test, p = 0.365 for 3090.13, p = 0.843 for 8291;
Figure 3c). Therefore the propensity for LLMDA detection likely derives from a complex interaction of
sample composition and statistical parameters of the analysis.

Several taxa were detected only with LLMDA. This may suggest that the LLMDA is more
sensitive than HTS to certain taxa, as a rarefaction analysis of the HTS data suggests that in neither
sample have all the HTS-detectable families likely been observed at these sequencing depths (Figure
5). Cholera victim 3090.13 in particular shows a near-linear rarefaction curve, potentially explaining
why it has so many more LLMDA-only calls than does plague victim 8291. However, taxa detected by
both HTS and LLMDA still have significantly higher LLMDA log odds scores than taxa detected by



LLMDA alone (two-tailed, unequal variance Student’s t-test, p = 0.031 for 3090.13, p = 0.013 for 8291;
Figure 3d). This difference likely reflects the fact that LLMDA calls with smaller log-odds scores are
supported by fewer detected probes, and are thus inherently less reliable. However, the relationship
between log odds scores and HTS observations is imperfect, as several taxa with relatively high read
counts have maximum log odds score values within the range of LLMDA-only calls (e.g.,
Caulobacteraceae for sample 8291 and Moraxellaceae for sample 3090.13). Again as noted above,
there is no significant difference between the proportion of unique genomic bases covered by HTS
reads for LLMDA-positive and LLMDA-negative taxa (Figure 3c). Therefore, it is likely that a more
complex combination of variables drive these signal disparities.

Here we demonstrate that the LLMDA provides similar bacterial family-level metagenomic
profiles of archaeological and archival specimens as HTS, especially for the most abundant families.
Furthermore, as demonstrated with cholera victim 3090.13, it is potentially capable of detecting
bacterial families that are insufficiently or unable to be detected even with very large HTS datasets,
due to the very deep sequencing depths required to observe low abundance HTS taxa, likely common
for many co-infecting pathogens. This is encouraging, since LLMDA analysis is at least one order of
magnitude less expensive and labor-intensive than metagenomic HTS. As such, the technique could be
productively applied in a number of research settings, depending on the specific question and the
nature of the specimens. For instance, dozens of samples could be rapidly assessed for the most
abundant pathogen constituents. Use of the LLMDA may also integrate well into TE-HTS studies not
only by narrowing the range of targets for hybridization capture, but also by generating enriched
libraries via elution from the microarray itself, which can be later sequenced. However it is clear that
the profiles generated by the LLMDA and HTS are not identical, and criteria for confident family
detection with both platforms remain imperfect. Though no single or simple combination of variables
fully explains the signal disparities, there is good evidence that analysis techniques, GC content, and
probe design drive the disagreements between the LLMDA and HTS, but that further evaluation may
be able to refine these disparities. With such efforts, we expect that microarrays will evolve in the near
future to become an excellent screening tool for archaeological and clinical samples where microbial
profiles can be swiftly, cheaply, and accurately reconstructed, to help determine the microbial flora
and its possible contribution to population health through time.

Methods

Libraries from these specimens were both shotgun HTS sequenced (divided across one HiSeq
1000 lane: 141,039,627 reads for cholera victim 3090.13, 122,830,910 reads for plague victim 8291 and
utilized for LLMDA analysis. HTS datasets were compared to the NCBI RefSeq database®” using BLAST
2.2.26+° and the resulting BLAST reports were parsed using MEGAN4 v.4.70.4 with the default
settings.”! Taxonomic trees were illustrated manually using FigTree (v.1.4.0;
http://tree.bio.ed.ac.uk/software/figtree) based on MEGAN4 results. Indexed libraries were sent to



Lawrence Livermore National Laboratory (LLNL) for blind analysis using the 12-plex 135K Roche
NimbleGen version of the LLMDA v5 array,*® which is designed to target 3521 vertebrate-infecting
species from 215 families (including bacteria, archaea, viruses, protozoa and fungi). A brief summary of
the LLMDA workflow is as follows: libraries are linearly amplified via random hexamers (Cy-3 labeled)
to add the necessary fluorescent signal, hybridized to the LLMDA array for 65h, washed, scanned, and
analyzed. Unlike other aDNA experiments utilizing in-solution or array hybridization, “blocking
oligonucleotides” were not used, as this is not a standard component of the LLMDA procedure. Arrays
were analyzed using the CLiMax algorithm®® with probe intensity threshold set to the 95 percentile of
negative controls. See Supplementary Appendix for all further details.
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Table Captions

Table 1. Summary of LLMDA and HTS results

Only taxa with probes designed on the LLMDA array are shown (see Table S1 for full results).
Only taxa with at least 5 reads are called with HTS-MEGAN4 analysis. Reads = number of HTS reads
assigned to that taxonomic level (- = not found in HTS dataset). LO score = LLMDA log odds score (- =
not called with LLMDA). Phyla abbreviations = Act, Actinobacteria; Bac, Bacteroidetes; Chla,
Chlamydiae; Chlo, Chlorobi; Chl, Chloroflexi; Fib, Fibrobacteres; Fir, Firmicutes; Fus, Fusobacteria; Pro,
Proteobacteria; Spi, Spirochaetes; Syn, Synergistetes; Ten, Tenericutes; The, Thermotogae; Ver,
Verrucomicrobia.

Figure Captions

Figure 1. Number of bacterial families detected by HTS and/or LLMDA

Number of bacterial families (or less-specific higher taxonomic level) detected by HTS sequencing
(green circles) and LLMDA analyses (blue circles). Families detected by both methods are indicated
where the circles overlap. Values above the midline include all detected families, whereas values below
the midline are restricted to families included in the LLMDA probe design.

Figure 2. Comparison of HTS results vs. LLMDA results. Cladograms based on NCBI Genbank taxonomy
indicating results of the BLASTN/MEGAN4 HTS analysis at the family level and above compared to
LLMDA results. At the leaves, circle size reflects the relative number of reads assigned to those taxa
(internal node sizes only indicated if >10 reads). Colors of taxon names indicate whether that taxon had
(1) reads present in the HTS data, (2) probes designed for that family on the LLMDA, and (3) LLMDA call
for that taxon. Bacterial phyla and major clades are highlighted. a. Cholera victim specimen 3090.13,
b. Plague victim specimen 8291.

Figure 3. HTS vs. LLMDA comparisons

HTS readcounts, GC content, unique genomic positions sequenced, and maximum log odds
scores for both specimens plotted against whether they were detected (+) or not detected (-) with
LLMDA (a-c) or HTS (d). For HTS read counts, all HTS-identified families are analyzed (a); GC content
and unique genomic positions are analyzed only for families that were used for LLMDA probe design
(b,c); log odds scores are only analyzed for families detected with LLMDA.

Figure 4. Average LLMDA probe GC% vs average LLMDA probe log intensity, by family

Analysis is restricted to families used for LLMDA probe design (see SOM for details). Families
not detected with HTS are represented with blue triangles. Families detected wit both methods are
represented with red circles.
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Figure 5. HTS rarefaction analysis

Rarefaction curves showing the number of bacterial families represented by at least 5 reads as
a percent of the total observed families per sample with increasing read depth (0.1% increments).
Dashed lines represent lines of best fit cholera victim specimen 3090.13 is a linear curve (R* = 0.96936),
plague victim specimen 8291 is a logarithmic curve (R* = 0.98217).
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Table 1. Summary of LLMDA and HTS results

Only taxa with probes designed on the LLMDA array are shown (see Table S1 for full results). Only taxa with at

least 5 reads are called with HTS-MEGAN4 analysis. Reads = number of HTS reads assigned to that taxonomic level (- = not
found in HTS dataset). LO score = LLMDA log odds score (- = not called with LLMDA). Phyla abbreviations = Act,
Actinobacteria; Bac, Bacteroidetes; Chla, Chlamydiae; Chlo, Chlorobi; Chl, Chloroflexi; Fib, Fibrobacteres; Fir, Firmicutes;
Fus, Fusobacteria; Pro, Proteobacteria; Spi, Spirochaetes; Syn, Synergistetes; Ten, Tenericutes; The, Thermotogae; Ver,

Verrucomicrobia.

Cholera victim specimen 3090.13 Plague victim specimen 8291
Phylum Family Reads LO score Phylum Family Reads LO score
Pro Vibrionaceae 10,600 4,470.7 Pro Enterobacteriaceae 15,062 1,640.8
Pro Aeromonadaceae 1,877 480.0 Pro Alcaligenaceae 11,976 880.0
Pro Enterobacteriaceae 1,072 4,944.3 Pro Bradyrhizobiaceae 8,189 174.4
Fir Erysipelotrichaceae 1,039 561.7 Pro Burkholderiaceae 7,298 10,155.0
Fir Clostridiaceae 989 2,023.6 Fir Clostridiaceae 5,188 1,861.8
Fir Streptococcaceae 387 486.6 Act Pseudonocardiaceae 4,876 474.1
Pro Comamonadaceae 233 496.6 Pro Comamonadaceae 3,704 466.2
Fir Peptostreptococcaceae 216 - Pro Pseudomonadaceae 2,778 3,461.5
Pro Pseudomonadaceae 178 4,313.1 Pro Xanthomonadaceae 2,720 197.3
Pro Moraxellaceae 122 105.2 Act Streptomycetaceae 2,135 506.1
Pro Xanthomonadaceae 93 228.0 Pro Methylobacteriaceae 1,195 118.3
Pro Burkholderiaceae 22 11,233.8 Pro Oxalobacteraceae 1,045 119.6
Fir Veillonellaceae 22 130.2 Pro Neisseriaceae 903 232.0
Act Corynebacteriaceae 19 309.5 Pro Sphingomonadaceae 747 -
Fir Staphylococcaceae 14 273.6 Act Mycobacteriaceae 642 1,368.6
Pro Pasteurellaceae 11 - Pro Caulobacteraceae 606 106.0
Act Micrococcaceae 8 358.5 Pro Acetobacteraceae 492 222.6
Pro Neisseriaceae 8 - Fir Peptostreptococcaceae 324 -
Fir Enterococcaceae 6 204.0 Act Nocardiaceae 310 282.7
Bac Flavobacteriaceae 6 - Pro Brucellaceae 274 -
Fir Bacillaceae 5 3,077.2 Pro Halomonadaceae 204 -
Act Streptomycetaceae 5 523.1 Pro Aeromonadaceae 167 -
Act Coriobacteriaceae 5 123.6 Pro Desulfovibrionaceae 158 218.4
Fus Fusobacteriaceae 5 - Fir Lachnospiraceae 131 707.8
Fir Paenibacillaceae - 1,100.2 Fir Eubacteriaceae 122 74.3
Fir Lachnospiraceae 1,016.1 Act Micrococcaceae 111 349.9
Act Propionibacteriaceae - 947.8 Fus Fusobacteriaceae 99 -
Pro Alcaligenaceae - 745.0 Fir Peptococcaceae 97 116.1
Fir Lactobacillaceae - 677.9 Act Propionibacteriaceae 95 950.6
Pro Desulfovibrionaceae - 390.9 Act Cellulomonadaceae 92 -
Act Actinomycetaceae - 231.2 Pro Sutterellaceae 85 -
Act Bifidobacteriaceae - 225.6 Act Gordoniaceae 84 -
Act Micrococcineae - 213.2 Pro Piscirickettsiaceae 82 -
Fir Carnobacteriaceae - 207.6 Fir Streptococcaceae 79 104.2
Act Mycobacteriaceae - 185.0 Act Coriobacteriaceae 77 112.0
Fir Listeriaceae - 164.0 Act Actinomycetaceae 74 216.8
Fir Planococcaceae - 157.1 Pro Cardiobacteriaceae 70 -
Fir Aerococcaceae - 135.2 Fir Lactobacillaceae 66 378.8
Pro Deferribacteraceae - 128.3 Fir Veillonellaceae 65 228.7
Fir Peptococcaceae - 127.7 Fir Bacillaceae 63 2,764.1
Ver Verrucomicrobiaceae - 127.4 Pro Moraxellaceae 62 203.2
Act Jonesiaceae - 126.6 Act Corynebacteriaceae 54 562.3
Pro Helicobacteraceae - 124.7 Act Intrasporangiaceae 53 -
Pro Caulobacteraceae - 117.6 Act Bifidobacteriaceae 52 748.5
Chl Herpetosiphonaceae - 112.8 Spi Spirochaetaceae 52 -
Act Brevibacteriaceae - 112.7 Pro Erythrobacteraceae 44 -
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Figure 1. Number of bacterial families detected by HTS and/or LLMDA

Cholera victim #3090.13 Plague victim #8291
Intestine, 1849 AD Tooth, c. 1347 AD
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Figure 2. Comparison of HTS results vs. LLMDA results.
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Figure 3. HTS vs. LLMDA comparisons
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Figure 4. Average LLMDA probe GC% vs average LLMDA probe log intensity, by family
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Figure 5. HTS rarefaction analysis
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I. Supplemental Methods
A. Sample preparation

Sample 3090.13 is a preserved intestinal specimen from a victim of the 1849 Philadelphia
cholera epidemic, sealed in a glass jar with alcohol, and stored in the collections of the Miitter
Museum (Philadelphia, PA, USA). This specimen was sub-sampled, extracted, and libraries suitable for
sequencing on the Illumina platform were prepared as described in reference 1. Specimen 8291 is a
tooth from a victim of the Black Death buried at the East Smithfield cemetery in London in 1348-1349.°
This specimen was sampled and extracted using the same methods as described in reference 2.
Libraries suitable for sequencing on the Illlumina platform were prepared just as for 3090.13 (above), as
described in reference 1.

B. Shotgun HTS sequencing

Prior to sequencing, additional indexing amplification was performed in 8 reactions each
sample (5 ul 0.1x diluted template DNA in 50 pl total reaction volume) of indexed library, using 400nM
each indexing primer, and 11 cycles for 3090.13 and 20 cycles for 8291. The purified libraries were
pooled in equimolar ratio on one lane of lllumina HiSeq 1000. Sequencing was performed by the
Farncombe Family Digestive Health Research Institute (McMaster University). 100bp paired-end read
chemistry was used, with one indexing read. The lane yielded 141,039,627 reads each direction from
3090.13 and 122,830,910 reads each direction from 8291.

C. Pathogen HTS assemblies

Raw R1 reads from each sample were trimmed to remove residual adaptor sequence using
cutadapt (v.1)* with the parameters: error rate (0.16), minimum overlap (1). Reads <28bp were
removed from a 24,000,000 subset of each sample, leaving 12,946,441 for 3090.13 and 12,076,222 for
8291. To calculate HTS pathogen percentages, remaining reads were aligned using bowtie v.0.12.7*
with default settings to the 0395 strain V. cholerae reference genome (NC_009456, NC_009457) for
sample 3090.13 and to the CO92 strain Y. pestis reference genome and 3 plasmids pCD1, pPCP1, and
pMT1 (NC_003143, NC_003131, NC_003132, NC_003134) for sample 8291. For 3090.13, 6,938 aligned
(0.054% of reads >28bp, 0.029% of total reads), and for 8291, 18,931 aligned (0.157% of reads >28bp,
0.079% of total reads).

D. HTS BLAST & MEGAN metagenomic analysis
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Raw reads from each sample were trimmed using cutadapt (v.1.1) with the parameters -b (13bp
adaptor sequence), —e (errors allowed) 0, — m (minimum length, bp) 20, -q (Phred scaled quality cutoff)
20, and -0 (overlap, bp) 13, leaving 118,859,751 reads from 3090.13 and 89,321,997reads from 8291
for further processing. Reads were subjected to local BLASTN-megablast analysis (v.2.2.26+) using a
local copy of the refseq_genomic database (downloaded October 16, 2012), using the parameters: -
task megablast, -word_size 28, -evalue 1e-10, -num_descriptions 100, -num_alignments 100. BLAST
reports were parsed using MEGAN4 (v.4.70.4) using the default lowest common ancestor (LCA)
parameters.” Full results of this analysis can be found in Table S2.

E. LLMDA Analysis

i. LLMDA v5 design

All completely sequenced genomes or elements (chromosomes, mitochondria, plasmids) as of
December 20, 2011 were obtained from public sources (NCBI, J. Craig Venter Institute, etc.). These
included assembled draft and finished sequences for viruses, bacteria, archaea, fungi, and the subset
of protozoa known to be human pathogens or their near neighbors. These were grouped by kingdom
and family. LLMDAV5 was designed using substantially the same approach as previous versions,®
namely, finding family-specific regions in the available complete sequences, and selecting probes
within those regions such that all targets are represented by both conserved and discriminating
probes. The LLMDAvV5 135K design has approximately 135,000 unique target probes. Conserved probes
were selected favoring the most within-family conserved, thermodynamically optimal probes, so that
all targets were represented by at least 15 conserved probes. Discriminating probes were selected
favoring the least conserved probes for each sequence, with at least 2 per genome or sequence
element. On the 135K design, only probes from families containing at least one species known to infect
vertebrates were included for the viruses, bacteria, and fungi. All archaea families were included since
there were few enough probes to include them all, as well as all the pathogenic protozoa previously
selected for probe design. Vertebrate infecting bacterial, viral, and fungal families were selected based
on literature (PubMed) and web searches to determine whether any members of a family have been
found to infect vertebrates or were involved in clinical infections, and all members of a family were
included even if only some of them were vertebrate-infecting. The array also included several
thousand negative control probes with random sequences designed to match the length and GC%
distribution of the target probes. The following numbers of species were represented: 3,521 microbial
species total, including 1,856 viral species, 1,398 bacterial species, 125 archaeal species, 94 protozoan
species, and 48 fungal species.

ii. LLMDA analyses

LLMDA arrays were analyzed using the CLiMax (Composite Likelihood Maximization) algorithm,
described in detail previously*, followed by some additional processing steps. We measured probe
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intensities on each array using NimbleScan software (Roche NimbleGen) and reduced them to vectors
of binary probe detection indicators, by comparing each target probe intensity to the 95" percentile of
the negative control probe intensities. The CLiMax software processes this indicator data using a
greedy iterative procedure to predict a series of targets likely to be present in the sample. In the first
iteration, a target is selected by computing, for each genome in a reference target database, the log-
odds of the observed probe detection data if that genome were present in the sample; the target with
the highest log-odds score becomes the first element of the series. In each subsequent iteration, a
conditional log-odds score is computed for each remaining target, representing the likelihood of the
data if the target were added to the series, relative to the likelihood given the previously predicted
targets. The target with the largest conditional log-odds score is then appended to the series. Iterations
continue until there are no additional targets with positive conditional log-odds scores, meaning that
no further improvement in the likelihood can be obtained by predicting additional targets.

After the initial CLiMax analysis, we filtered the list of genomes predicted to be present by
rejecting those for which the array detected only a small subset of the genome regions covered by
probes. In our past experience, targets with this pattern of detected probes are likely to be false
positives, resulting from cross-hybridization to a similar region in another genome. Figure S3 shows
examples of targets that were accepted and rejected under this filtering strategy. We aligned probes
matching each selected target sequence to genome positions using BLAST. We used Gaussian kernel
density estimates to approximate the positional distribution functions for all probes matching the
target (with predicted detection probabilities greater than 0.85), and for the subset of these probes
with intensities above the 95™ percentile of negative controls, taking care to use the same bandwidth
for both estimates. To quantify the difference between these two distributions, we computed the
Kullback-Leibler divergence (Dx.) between the two density estimates. If forea(x) and fae:(x) are,
respectively, the estimated density functions for the probes predicted to bind the target and the
probes actually detected, evaluated at discrete positions x, then the K-L divergence is computed as

Dii(fored | | faet) = ZX fored(X) 108 ( fored(X) / faet(x) ). Targets with Dy, > 4x10™ were removed from the

predicted set; this threshold was chosen by analysis of samples of known composition, to provide a
reasonable compromise between sensitivity and specificity. The numbers of target sequences
predicted to be present in sample 8291 were 398 total and 204 after filtering; for sample 3090.13 the
target counts were 430 total and 217 after filtering.

Finally, to enable comparison of the LLMDA results with the family-level results produced by
BLAST and MEGAN analysis of HTS data, we grouped the filtered targets by family, and summed log-
odds scores over targets to produce an aggregate score for each family.
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Il. Supplemental Results

Table S1. LLMDA and HTS analysis, full results

SEE EXCEL FILE

Table S2. HTS BLASTN/MEGAN metagenomic profiles, full results

SEE EXCEL FILE
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Figure S1. Flowchart of workflow
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Figure S2. Number of HTS reads vs. HTS GC%, by family

For each bacterial family detected by HTS with probes present on the MDA v5, plots of the total
number of HTS reads assigned to that family versus GC% of the HTS reads (see SOM for details). Data
only shown for those families with HTS representation (3090.13 = 24; 8291 = 81). Blue triangles =
families not detected via LLMDA. Red circles = families detected by LLMDA.
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Figure S3. Examples of LLMDA detected probe distributions

A: Log intensities vs genome position for probes targeting Chlamydia muridarum on array hybridized to
sample 8291, and probe detection probabilities (based on similarity to target sequence) vs position. Purple
triangles indicate that intensity was above the 99™" percentile of the negative controls; orange circles indicated
intensities between the 99" and the 95" percentiles; red squares indicate intensities below the 95 percentile.
Open circles (or squares or triangles) are the probes that we excluded from the score computation, because they
light up non-specifically even when there's no sample present in the hyb mixture.This target was removed from
the predicted set because the only high-intensity probes came from a narrow region of the genome.
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B: Log intensities and detection probabilities vs genome position for probes targeting
Pseudomonas fluorescens Pf-5 on array hybridized to sample 3090.13. This target was included in the
predicted set, since high-intensities are found from most regions of the genome that are covered by
high-probability probes.
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